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A new reconstruction scheme for the computation of inviscid
compressible �ows on 3D unstructured grids
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SUMMARY

A �nite-volume method for the solution of three-dimensional inviscid compressible �ows on cell-vertex
tetrahedral meshes is proposed. A higher-order-accurate upwind discretization is obtained by using a
new linear reconstruction and a standard �ux-di�erence-splitting scheme. The method is validated by
computing the subsonic �ow in a 90◦ rectangular elbow with a total pressure gradient imposed at inlet.
Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, �nite-volume upwind schemes for the discretization of the compressible
�ow equations have reached a remarkable level of accuracy and robustness, which make
them suitable for the numerical simulation of three-dimensional complex �ows. However,
engineering applications often require the analysis of complex geometries, which can be easily
discretized by means of unstructured meshes. Most �nite-volume methods for unstructured
grids proposed to date employ a cell-vertex discretization, since it allows a natural de�nition of
the cell-based �ow gradients, which are required both for the higher-order reconstruction and
for the discretization of the viscous terms. Using a dual mesh, a gradient-based reconstruction
is applied to compute the left and right states of the interface associated to each side; an
approximate Riemann solver is then applied to select the proper upwind contributions, see,
e.g. References [1–5]. However, to the knowledge of the author, all of the methods for
cell-vertex unstructured grids developed so far reconstruct the �ow variables using gradients
de�ned in the two nodes, and computed from the gradients in the surrounding cells, see, e.g.
Reference [3], where an average between the Hermitian gradients and the central di�erence
on the side itself is used.
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Two motivations have suggested to investigate alternative reconstruction schemes: the dis-
cretization of viscous �ows needs the cell-based gradients only; therefore, all of the approaches
outlined above require an additional computation of gradients which are not necessary for vis-
cous �ows. Moreover, when reducing to the one-dimensional �ow equations there is no corre-
spondence with the standard one-dimensional upwind extrapolation, as it will be shown in the
next section. For such a reason, an alternative, much simpler, reconstruction scheme has been
recently proposed in References [6; 7], and validated by computing subsonic and transonic
inviscid �ows in two-dimensional turbine cascades. In particular, References [7; 8] demon-
strate its very good shock-capturing properties and consider its extension to two-dimensional
laminar and turbulent �ows.
This paper proposes the extension of the reconstruction scheme introduced and tested in

References [6–8] to the numerical solution of three-dimensional inviscid �ows. The next
sections will be devoted to the description of the new reconstruction scheme, that will be
tested by computing the subsonic �ow in a 90◦ rectangular elbow with a total pressure
gradient imposed at inlet.

2. NUMERICAL METHOD

2.1. Governing equations

The governing equations for three-dimensional, compressible, inviscid �ows, are written in
integral form as ∫

V

@U
@t
dV =

∮
@V

F · n dS (1)

In Equation (1), n is the inward normal of the contour of V; @V; U =(�; �u; �v; �w; �e0)T is
the vector of the conservative variables and F · n=[(�vn); (�uvn+pnx); (�vvn+pny); (�wvn+
pnz); (�h0vn)]T is the �ux entering through the unit element of @V . As usual, � is the density,
p is the pressure, e◦ is the total internal energy and h◦ is the total enthalpy. Moreover, C
denotes the velocity vector, with normal component vn= C · n and with Cartesian components
u, v and w. The system of governing equations is closed by considering a perfect gas.

2.2. Reconstruction scheme

For clarity and without loss of generality, the description of the space discretization and of
the reconstruction scheme will be partly referred to two dimensions. The domain is discretized
by means of an unstructured grid composed of triangles (tetrahedra in 3D) with unknowns
located at each cell-vertex. The �nite volume associated to each internal node i is constructed
by intersecting the medians of all surrounding triangles (median planes of all surrounding
tetrahedra in 3D), see Figure 1. This allows to associate an interface (ij) to the side connecting
the node i with each sorrounding node j. A higher-order-accurate upwind discretization of the
Euler equations is then obtained as follows: a left state and a right state, QL(ij) and Q

R
(ij), are

reconstructed on the two sides of the interface (ij) as

QL(ij) =Qj + (∇Q)ji · lji (2)

QR(ij) =Qi + (∇Q)ij · lij (3)
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Figure 1. Construction of the dual mesh in two dimensions and determination of the cell Cji.

lji and lij being the two opposite vectors pointing from the two nodes i and j to the mid-point
of the side, see Figure 1. Standard one-dimensional limiters can also be applied straightfor-
wardly.
Di�erent de�nitions of the gradients characterize the numerical methods cited in the Intro-

duction, but all of them appear cumbersome and in contrast with the corresponding
one-dimensional upwind scheme. Consider a one-dimensional uniform grid: on the interface
(k + 1=2), QLk+1=2 is linearly reconstructed as

QLk+1=2 =
3
2Qk − 1

2Qk−1 =Qk +
1
2(Qk −Qk−1) (4)

Equation (4) shows that in one dimension the reconstruction of the left state (similar arguments
hold for the right state) is based on the gradient of Q in the left-neighbouring cell, rather
than on the gradient de�ned in the node k. Similarly, in two and three dimensions, a unique
left-neighbouring cell can be de�ned as the cell Cji which contains the prolongation of the
side (ji), plotted as a dot-dashed line in Figure 1. The cell Cji is searched only once and
then stored as a pointer, except in the case of moving grids. The choice of a cell-vertex
triangular (tetrahedral in 3D) grid allows to compute the cell-based gradient (∇Q)ji ≡ (∇Q)Cji
uniquely. All of the gradients must be computed once at each iteration, stored, and then used
without any additional averaging. For this reason, and since the same gradients must be
computed anyway when solving the Navier–Stokes equations, we claim that the proposed
higher-order reconstruction minimizes the computational time required for the evaluation of
the �ow gradients.
It is noteworthy that if the prolongation of the side (ji) lies on a face (or a side in 3D)

separating two (or more in 3D) cells, the choice of the cell Cji is not crucial, since only the
projection of the gradient onto the side (ji) is used in Equation (2). Obviously, (∇Q)ji · lji is
continuous (its derivatives are not) through each face. In the case of moving grids, one can
move from one cell to another one continuously, as well.
The �ux-di�erence-splitting of Roe [9] is then used to solve the Riemann problem de�ned

at each interface. The �ux Fn=F · n is computed as

Fn=F · n=FL
n +FR

n − �Fn
2

(5)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:273–279



276 L. A. CATALANO

so as to select the upwind contributions by means of the term �Fn. In three dimensions, one
has:

�Fn=
5∑
k=1
�k |�k |ek (6)

In Equation (6), �k ; k=1; : : : ; 5, are the intensities of the entropy, of the shear and of the
acoustic waves, and �k ; k=1; : : : ; 5, are the corresponding propagation velocities:

�1 = ��− �p
c̃2
; �1 = ṽn

�2 = �̃�vs; �2 = ṽn

�3 = �̃�vt ; �3 = ṽn

�4 =
�p+ �̃c̃�vn

2c̃2
; �4 = ṽn + c̃

�5 =
�p− �̃c̃�vn

2c̃2
; �5 = ṽn − c̃

(7)

vs= C · s and vt = C · t being two tangential components of the velocity vector (s× t= n). Fi-
nally, ek ; k=1; : : : ; 5, are the eigenvectors which project each wave contribution onto the
conservative variable vector:

e1 = (1; ũ; ṽ; w̃; |C̃|2=2)T

e2 = (0; sx; sy; sz; ṽs)T

e3 = (0; tx; ty; tz; ṽt)T

e4 = (1; ũ+ nxc̃; ṽ+ nyc̃; w̃ + nzc̃; h̃◦ + c̃ṽn)T

e5 = (1; ũ− nxc̃; ṽ− nyc̃; w̃ − nzc̃; h̃◦ − c̃ṽn)T

(8)

In Equations (7) and (8), �()= ()R − ()L, and ˜ denotes the Roe averages:
�̃=

√
�L

√
�R

C̃=
CL
√
�L + CR

√
�R√

�L +
√
�R

h̃◦ =
h◦L

√
�L + h◦R

√
�R√

�L +
√
�R

c̃= (�− 1)(h̃◦ − |C̃|2=2)

(9)

2.3. Reconstruction near boundaries and boundary conditions

When a face lies on a boundary, the dual mesh is completed by using the boundary itself, see
the boundary node b in Figure 1. The �ux through each boundary face is computed directly
by means of the values in the boundary nodes; in particular, when b is on a solid wall, the
pressure forces must be added to the momentum equation, only.
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The lack of further cells beyond the boundaries makes it impossible to apply the higher-
order reconstruction onto the near-boundary interfaces. The reduced accuracy is negligible
for far-�eld boundaries, where gradients must be very small, but a signi�cant amount of
numerical entropy would be generated near solid walls. A simple procedure to overcome
this problem has been proposed in Reference [6], following the approach of Reference [10]:
a row of auxiliary cells is introduced beyond the solid walls and the states in the auxiliary
nodes are updated by imposing the isentropic simple radial equilibrium at the mid-point of
each solid face. Here, a similar, but more general approach, which avoids the generation of
auxiliary cells, is proposed: when the search of the cell Cji which contains the prolongation
of the side (ji) is unsuccessful, the vector lij is re�ected on the solid wall and a new search
is started, which surely will be completed successfully. The corresponding cell Cji is pointed
with a minus sign, so as to remember that it has been found with a re�ected vector. When
the cell Cji is invoked with a minus sign in the reconstruction phase, its gradient is modi�ed
according to the equations of isentropic simple radial equilibrium. The extension to viscous
�ows is straightforward.
Finally, the standard characteristic approach is applied to the residuals in the inlet and outlet

nodes, to enforce the corresponding boundary conditions.

2.4. Time integration

The state in each node is updated by means of a two-stage Runge–Kutta explicit scheme with
non-optimal coe�cients 0.42 and 1 and CFL number 0.3.

3. RESULTS

The proposed numerical method has been tested versus the well-known Stanitz elbow �ow
problem. The employed tetrahedral mesh which discretizes half the symmetric domain has
been generated by subdividing each cell of a 56× 24× 24 (uniform) structured grid in �ve
tetrahedra, so as to allow the comparison both with the reconstruction scheme of Reference [3]
and with the �uctuation splitting method for structured grids proposed in Reference [12].
A total-pressure gradient is imposed at the inlet section of the 90◦ rectangular elbow, with

outlet isoentropic Mach number M2; is=0:45. Figure 2 shows the contours of total-pressure
loss, de�ned as �p◦=(p◦

1 − p◦)=(p◦
1 − p2); 1 and 2 being the inlet and outlet sections,

respectively, and p◦
1 being the inlet total pressure in the core �ow. Since in the low-speed

region the centrifugal force is not balanced by the pressure gradient imposed by the streamline
curvature in the core, a secondary �ow develops along the channel: the convection of the
low-total-pressure particles rolls up the initial pro�le, see Figure 2, which also provides the
total-pressure-loss contours at the outlet section, computed by using the present reconstruction
scheme. This result is very similar to those obtained by using the other two methods (not
shown). In order to analyse if small discrepancies exist, Figure 3 shows the distributions of
the pressure coe�cient cp=(p−p2)=(p01−p2) on the suction side (06s61), on the end-wall
(16s62) and on the pressure side (26s63), at three axial locations (s=0 and 3 are on the
upper symmetry plane). Symbols refer to the experimental results provided in Reference [11],
where the inlet total-pressure gradient has been created by inserting a spoiler. Clearly, the
formation of the secondary �ow is mostly due to the velocity gradient imposed at the inlet;
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Figure 2. Total-pressure-loss contours at the inlet and outlet sections.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cp

experimental [11]
present
reconstruction of Ref. [3]
FS of Ref. [12]

Figure 3. Pressure coe�cient distributions at three axial locations.

however, important viscous e�ects are still present and a�ect the pressure �eld. Moreover,
uncertainties in the pressure-probe locations on the pressure side (26s63) are declared in
Reference [11]. Figure 3 reports also the present numerical results, as solid lines, together with
those obtained (on the same grid) by using the reconstruction of Reference [3] (dotted lines)
and the �uctuation splitting method for structured grids of Reference [12] (dot-dashed lines).
For all of them, the comparison with the experimental data shows major discrepancies on the
upper part of the suction side (s→ 0), due to the presence of important viscous e�ects and of
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lower intensities of the secondary �ow. On the contrary, the convective e�ects dominate the
region strongly swept by the vortex, namely the lower part of the suction side (s≈ 1), and
a better agreement with the experimental data is possible. Obviously, the major discrepancies
among the three numerical solutions are found in this high-gradient region. In particular, the
present numerical method is capable of reproducing the peaks of cp slightly better than the
reconstruction of Reference [3].

4. CONCLUSIONS

A �nite-volume method for the solution of three-dimensional inviscid compressible �ows on
cell-vertex tetrahedral meshes is presented. In particular, a new higher-order reconstruction
of the �ow variables is proposed, which involves only the cell-based gradients that will be
required anyway for the solution of the Navier–Stokes equations. The numerical method is
validated by computing the subsonic �ow in a 90◦ rectangular elbow with total pressure
gradient imposed at inlet. The comparison with experimental data and with the numerical
results obtained by using both a more cumbersome reconstruction scheme and a �uctuation
splitting method demonstrates the accuracy of the proposed technique.
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